Skip to Main Content

LSFM (Light Sheet Fluorescent Microscopy)

This is a list of publications on the theory, design and applications of light sheet microscopy and similar techniques. We try to keep it up-to-date, but please email Susi (spower@morgridge.org) if a paper is missing.

Pre-2007 SPIM Publications

Adams, M. W., Loftus, A. F., Dunn, S. E., Joens, M. S., & Fitzpatrick, J. A. J. (2001). Light Sheet Fluorescence Microscopy (LSFM). In J. P. Robinson, Z. Darzynkiewicz, R. Hoffman, J. P. Nolan, P. S. Rabinovitch, & S. Watkins (Eds.), Current Protocols in Cytometry (p. 12.37.1–12.37.15). Hoboken, NJ, USA: John Wiley & Sons, Inc. Retrieved from http://dx.doi.org/10.1002/0471142956.cy1237s71


Bradl, J., Hausmann, M., Ehemann, V., Komitowski, D., & Cremer, C. (1992). A tilting device for three-dimensional microscopy: application to in situ imaging of interphase cell nuclei. J. Microsc., 168(Pt 1), 47–57.


Can, A., Al-Kofahi, O., Lasek, S., Szarowski, D. H., Turner, J. N., & Roysam, B. (2003). Attenuation correction in confocal laser microscopes: a novel two-view approach. J. Microsc., 211(Pt 1), 67–79.


Clausen, S., & Astrup, P. (1995). Oblique laser-sheet visualization. Appl. Opt., 34(19), 3800–3805. https://doi.org/10.1364/AO.34.003800


Cogswell, C. J., Larkin, K. G., & Klemm, H. U. (1996). Fluorescence microtomography: multiangle image acquisition and 3D digital reconstruction. In C. J. Cogswell, G. S. Kino, & T. Wilson (Eds.), Electronic Imaging: Science & Technology (Vol. 2655, pp. 109–115). International Society for Optics and Photonics. https://doi.org/10.1117/12.237467


Engelbrecht, C. J., & Stelzer, E. H. (2006). Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett., 31(10), 1477–1479.


Fuchs, E., Jaffe, J., Long, R., & Azam, F. (2002). Thin laser light sheet microscope for microbial oceanography. Opt. Express, 10(2), 145–154. https://doi.org/10.1364/OE.10.000145


Heintzmann, R., & Cremer, C. (2002). Axial tomographic confocal fluorescence microscopy. J. Microsc., 206(Pt 1), 7–23.


Heintzmann, R., Kreth, G., & Cremer, C. (2000). Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images. Anal. Cell. Pathol., 20(1), 7–15.


Huber, D., Keller, M., & Robert, D. (2001). 3D light scanning macrography. J. Microsc., 203(Pt 2), 208–213.


Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., & Stelzer, E. H. K. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305(5686), 1007–1009. https://doi.org/10.1126/science.1100035


Keller, P. J., Pampaloni, F., & Stelzer, E. H. (2006). Life sciences require the third dimension. Curr. Opin. Cell Biol., 18(1), 117–124. https://doi.org/10.1016/j.ceb.2005.12.012


Kikuchi, S., Sonobe, K., Mashiko, S., Hiraoka, Y., & Ohyama, N. (1997). Three-dimensional image reconstruction for biological micro-specimens using a double-axis fluorescence microscope. Opt. Commun., 138(1–3), 21–26. https://doi.org/10.1016/S0030-4018(97)00054-0


Kikuchi, S., Sonobe, K., Sidharta, L. S., & Ohyama, N. (1994). Three-dimensional computed tomography for optical microscopes. Opt. Commun., 107(5), 432–444. https://doi.org/10.1016/0030-4018(94)90361-1


Kozubek, M., Skalníková, M., Matula, P., Bártová, E., Rauch, J., Neuhaus, F., … Hausmann, M. (2002). Automated microaxial tomography of cell nuclei after specific labelling by fluorescence in situ hybridisation. Micron, 33(7–8), 655–665.


Matula, P., Kozubek, M., Staier, F., & Hausmann, M. (2003). Precise 3D image alignment in micro-axial tomography. J. Microsc., 209(Pt 2), 126–142.


McLachlan, D. (1964). Extreme Focal Depth in Microscopy. Appl. Opt., 3(9), 1009. https://doi.org/10.1364/AO.3.001009


McLachlan, D., Jr. (1966). Deep field microscopy. Med. Biol. Illus., 16(2), 98–99.


McLachlan, D., Jr. (1971). The use of deep-field microscopy in crystal morphology. J. Cryst. Growth, 8(4), 363–371. https://doi.org/10.1016/0022-0248(71)90266-1


Reissig, J. (1908). Ultramikroskopische Beobachtungen. Ann. Phys., 332(11), 186–212. https://doi.org/10.1002/andp.19083321110


Root, N. (1985). Light scanning photomacrography–a brief history and its current status. J. Biol. Photogr., 53(2), 69–77.


Saetzler, K., & Eils, R. (1997). Resolution improvement by 3‐D reconstructions from tilted views in axial tomography and confocal \ldots. Bioimaging. Retrieved from http://doi.wiley.com/10.1002/1361-6374(199712)5:4%3C171::AID-BIO1%3E3.0.CO;2-K


Selchow, O. (2006). Von der Seite beleuchtet: Selective PLane Illumination Microscopy. BIOspektrum, 12, 3.


Shaw, P. J., Agard, D. A., Hiraoka, Y., & Sedat, J. W. (1989). Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei. Biophys. J., 55(1), 101–110. https://doi.org/10.1016/S0006-3495(89)82783-3


Siedentopf, H., & Zsigmondy, R. (1902). Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys., 315(1), 1–39. https://doi.org/10.1002/andp.19023150102


Simon, W. (1965). Photomicrography of deep fields. Rev. Sci. Instrum., 36(11), 1654–1655.


Stelzer, E., Enders, S., Huisken, J., Lindek, S., & Swoger, J. (2003). Microscope with the viewing direction perpendicular to the illumination direction. Retrieved from https://www.google.de/patents/EP2107408A3?cl=en


Swoger, J., Huisken, J., & Stelzer, E. H. K. (2003). Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt. Lett., 28(18), 1654–1656.


Taxis, C., Maeder, C., Reber, S., Rathfelder, N., Miura, K., Greger, K., … Knop, M. (2006). Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast. Traffic, 7(12), 1628–1642. https://doi.org/10.1111/j.1600-0854.2006.00496.x


Voie, A. H. (2002). Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy. Hear. Res., 171(1–2), 119–128.


Voie, A. H., Burns, D. H., & Spelman, F. A. (1993). Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc., 170(Pt 3), 229–236.


Voie, A. H., & Spelman, F. A. (1995). Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Comput. Med. Imaging Graph., 19(5), 377–384.


Voie, A. H., Spelman, F. A., Sutton, D., & Burns, D. H. (1989). Quantitative measurements of the three-dimensional anatomy of theguinea pig cochlea using optical \ldots. Engineering in Medicine and Biology Society. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=96444


Zapata-Rodríguez, C. J., Martínez-Corral, M., & Muñoz-Escrivá, L. (1998). Axial Superresolution by Oblique Two-Dimensional Nondiffracting cos Beam Illumination. J. Comput. Assist. Microsc., 10(3), 97–101. https://doi.org/10.1023/A:1023447018678


Zsigmondy, R., & Bachmann, W. (1914). Handhabung des Immersionsultramikroskops. Kolloid-Zeitschrift, 14(6), 281–295. https://doi.org/10.1007/BF01423340